

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

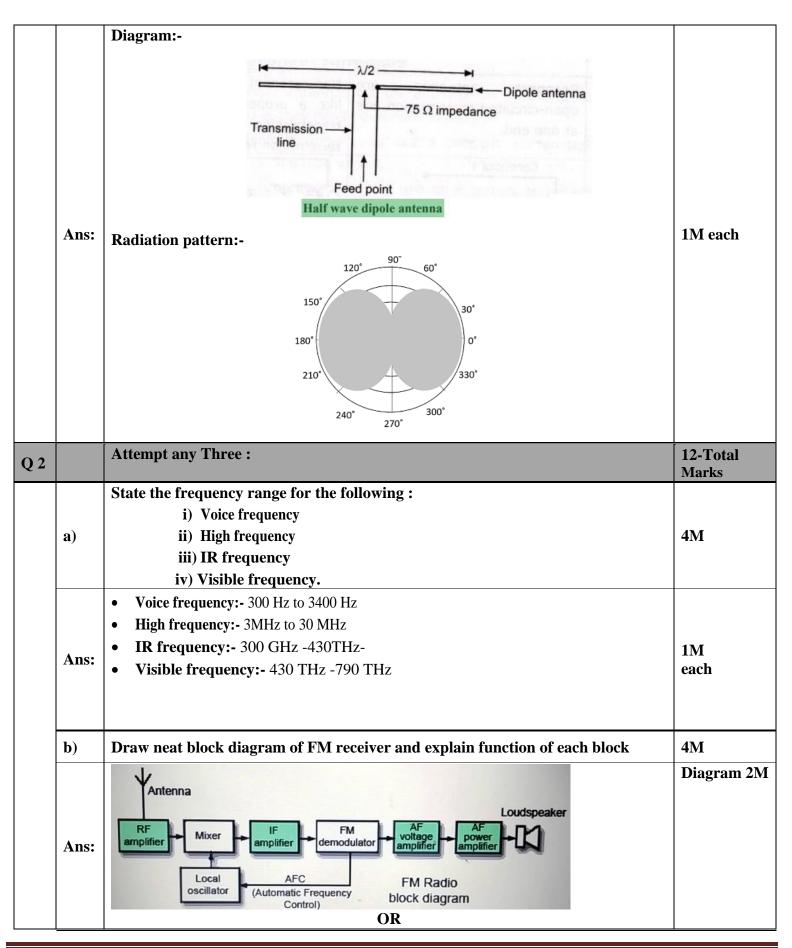
- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

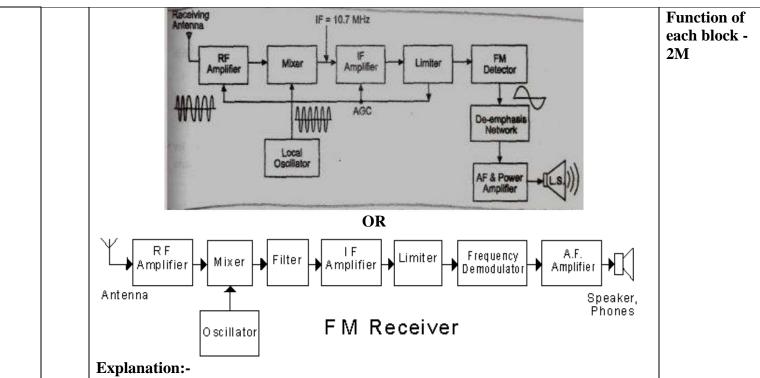
Subject Title: Principles of Electronic Communication Subject Code: 222

22334

Important Instructions to examiners:


- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any Five :	10-Total Marks
	a)	Define the term electrical noise. List types of noises.	2M
	Ans:	Electrical Noise:- It can be defined as undesirable electrical signals, which distort or interfere with an original (or desired) signal. Types of noises:- Noise Internal Internation Internation Internation Internation Internation Inte	1M for definition and 1M for types
	b)	State formula to calculate bandwidth of AM signal.	2M
	Ans:	Bandwidth of AM signal = 2* Fm Where	Correct formula -2M



	Fm is the modulating signal frequency	
c)	State the need of modulation in communication system.	2M
Ans:	 Need of modulation:- 1. To reduce the height of antenna 2. To avoids mixing of signals 3. To increases the range of communication 4. To make multiplexing of maximum signal is possible 5. To improve the quality of reception 	Any 4 points ½ M each
d)	List different methods of demodulation of FM signal.	2M
Ans:	 Balanced Slope detection Ratio detector Foster Seeley discriminator Phase locked loop demodulator 	¹ ⁄2 M each
e)	Sketch the graph of pre-emphasis and de-emphasis.	2M
Ans:	17 dB + 3 dB - 3 dB - 3 dB - 3 dB 17 dB 30 Hz 2120 Hz 16 kHz	2M
f)	Sketch neat diagram of duct propagation.	2M
Ans:	Top of atmospheric duct	2M
g)	Draw sketch of half wave dipole antenna and its radiation pattern.	2M

RF amplifier:

There are two important functions of RF amplifier:

1) To increase the strength of weak RF signal.

2) To reject image frequency signal. In FM broadcast the channel bandwidth is large as compared to AM broadcast.

Hence the RF amplifier must be design to handle large bandwidth.

Frequency Mixer:

The function of frequency mixer is to heterodyne signal frequency fs and local oscillator frequency fo. At the output, it produces the difference frequency known as intermediate frequency fi. The intermediate frequency used in FM receiver is higher than that in AM receiver. Its value is 12MHz (practical value of IF is 10.7MHz).

Local oscillator:

Since FM broadcast operates in VHF and UHF band, a separate local oscillator is used in FM receiver The local oscillator frequency fo is kept smaller than the signal frequency fs by an amount equal to the intermediate frequency fi

(fi = fs-fo).

IF amplifier:

Two or more stages of IF amplifier are used to provide large gain to the receiver. This increases the sensitivity of a receiver. If amplifier should be designed to handle large bandwidth.

Amplitude limiter:

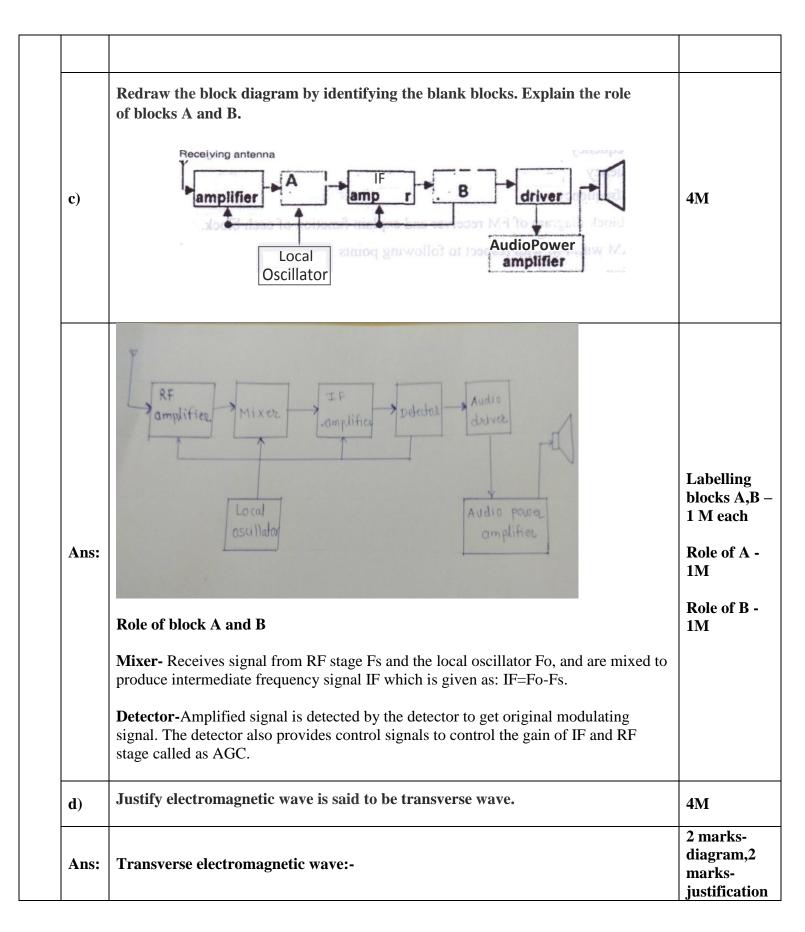
The function of amplitude limiter is to remove all amplitude variation of FM carrier voltage that may occur due to

atmospheric disturbances. Use of amplitude limiter makes the system less noisy.

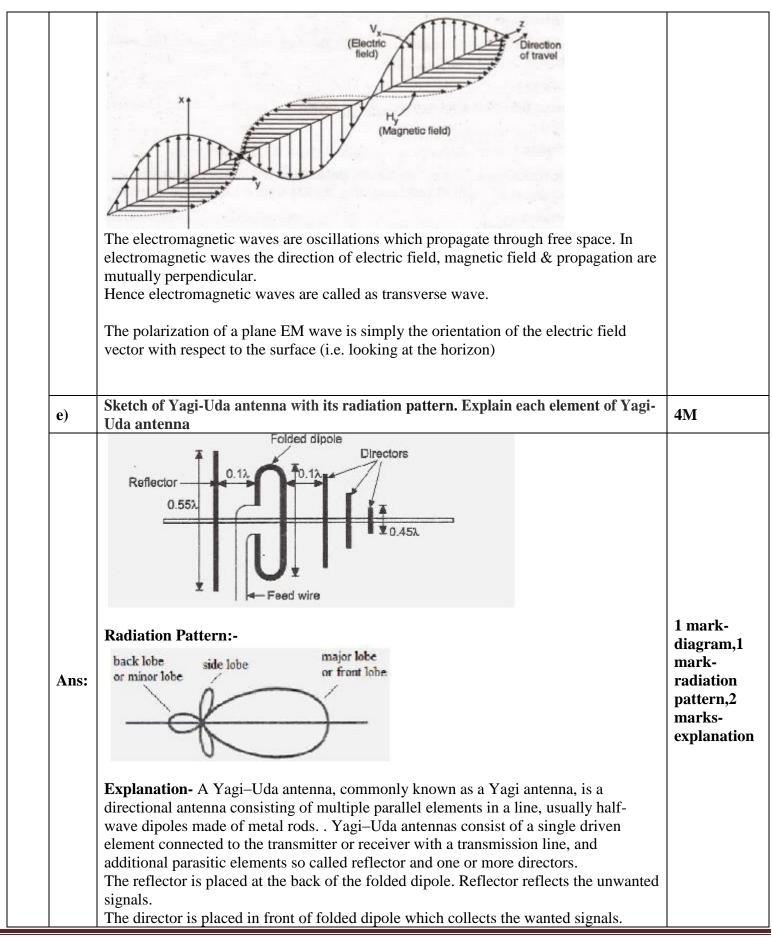
FM Discriminator or detector:

	produces audio signal at Audio frequency voltag Audio amplifier increase	e and power amplifier: s voltage and power level of aud imum modulating frequency i	lio signal to a suitable level.ir	ı
c)	Compare AM with FM a) Definition b) Modulatio c) Bandwidt d) Side band	n index. n.	ts:	4M
Ans:	Parameters Definition Modulation index Bandwidth Side band	AMIt is the process in which the amplitude of carrier signal is varied in accordance with the instantaneous value of modulating signal keeping frequency and phase constant.The value of modulating index is less than or equal to 1Twice the highest modulating frequency.There are two sidebands	FMIt is the process in whichthe frequency of carriersignal is varied inaccordance with theinstantaneous value ofmodulating signalkeeping amplitude andphase constant.The value of modulatingindex is always greaterthan 1Twice the sum of themodulating signalfrequency and thefrequency deviation.Infinite number ofsideband	1M each
d) Ans:	 .Find: a) Image free b) Local osci Tuned frequency is 1000 IF frequency is 455 KHz i) Image frequency = 1000 = 1910 	Ilator frequency. KHz means it is RF frequency	Hz is tuned to 1000kHz	4M Formula of each -1M Correct answer-1M

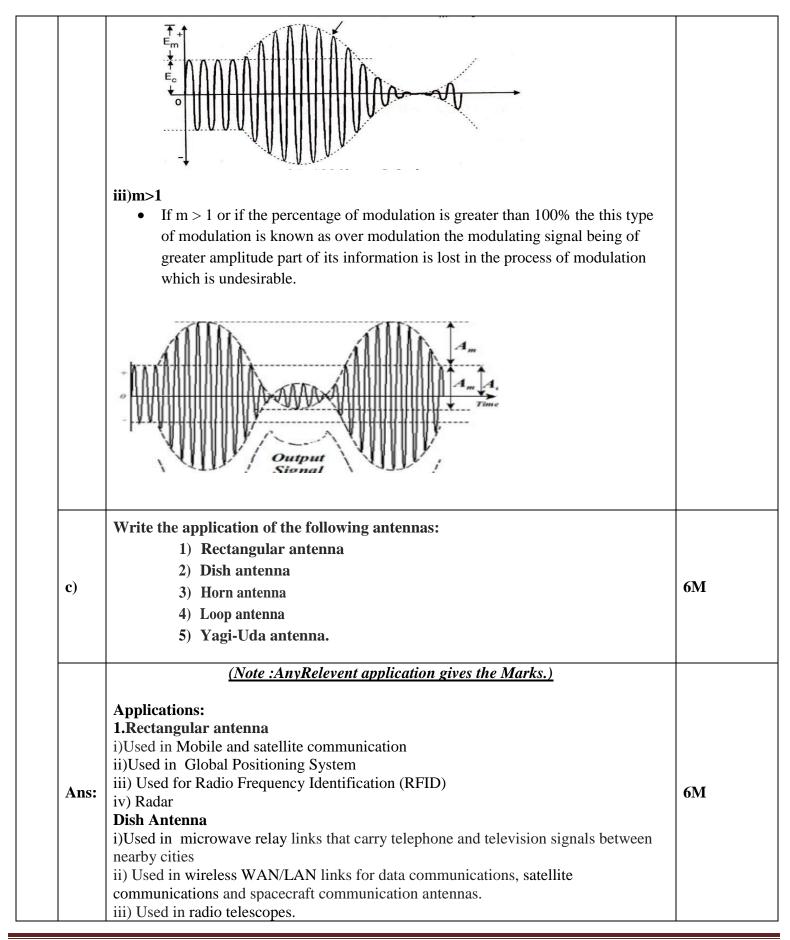
		= 1000 KHz – 455 KHz = 545 KHz	
Q.3		Attempt any three:	16-Total Marks
	a)	Draw AM signal in i) Time domain ii) Frequency domain.	4M
	Ans:	(i) AM in Time domain $ \begin{array}{c} (E_{c}+E_{m}) \\ = \\ -E_{c} \\ = \\ -E_{c} \\ = \\ (ii) AM in frequency domain $ $ \begin{array}{c} (ii) AM in frequency domain \\ = \\ D_{m}E_{c} _{2} \\ = \\ D_{m}E$	2 marks 2 Marks
	b)	 Find out type of propagation for following applications: 1) AM radio broadcasting 2) Ship to shore propagation. 3) Microwave links. 4) Satellite communication. 	4M
	Ans:	 AM radio broadcasting:-Ground Wave Propagation Ship to shore propagation:- Ground Wave Propagation Micro wave links:-Space Wave Propagation/ line of sight Satellite communication:-Space Wave Propagation/ line of sight 	1 mark for each type



c)	Compare characteristics of asynchronou mode (four points).	us and synchronous transmission	4M
Ans:	Synchronous transmission1. Synchronous transmission are synchronized by an external clock.2. In synchronous transmission data flows in a full duplex mode in the form of blocks or frames.3. In synchronous transmission ,data transmission speed is fast.4. Synchronous transmission is cost expensive.5. Synchronous transmission is used for transferring the bulk of data as it is efficient.	Asynchronous transmission1. Asynchronous transmission are synchronized by special signals along the transmission media.2. In asynchronous transmission data flows in a half duplex mode, 1byte or a character at a time.3. In asynchronous transmission, data transmission speed is slow.4. Asynchronous transmission is economical.5. Asynchronous transmission is used for transferring a small amount of data as it is simple and economical.	1 mark fo each poin
d)	Explain simple AGC and delayed AGC		4M
Ans:	 1) Simple AGC:- Simple AGC is a system by means varied, automatically with the chan the output substantially constant. 	Simple AGC Ideal AGC	2 marks for graph,1 mark for each type explanation

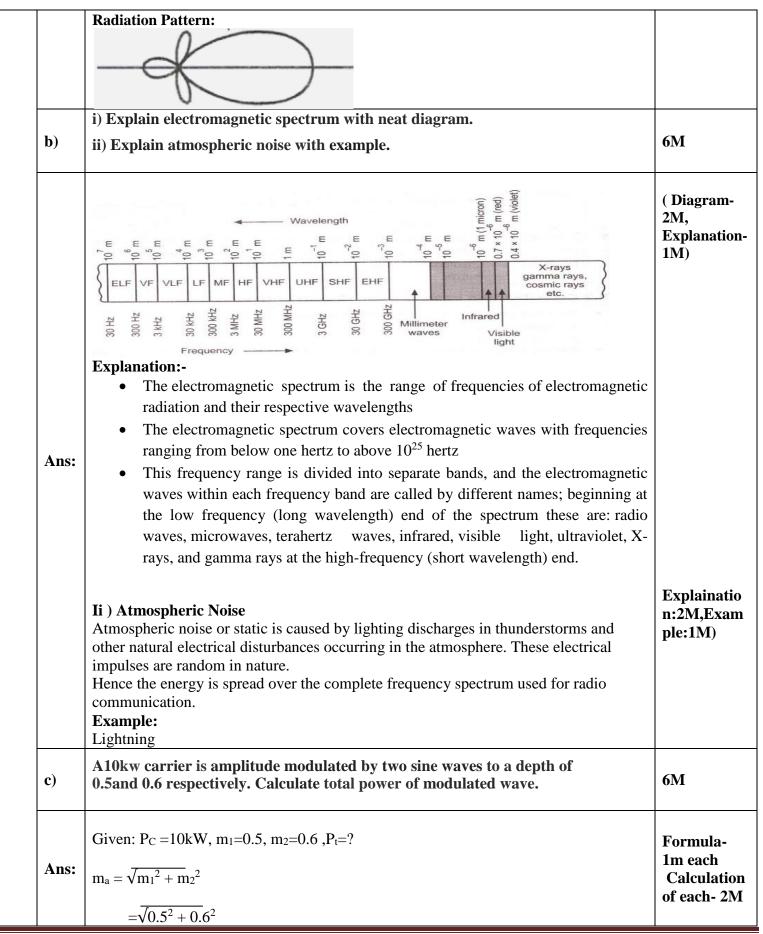


		more strongly.		
		• There is no reduction in gain for we	C	
		• The problem of reducing the receive delayed AGC is not used in low cost	er gain for weak signal is avoided .the t radio receiver.	
		• It is used in high quality receiver lik	e communication receiver.	
Q.4	A)	Attempt any THREE :		12-Total
2.1	11)			Marks
		Define the following terms:		
		1) Virtual height		
	a)	2) Actual height		4M
	u)	3) Critical frequency.		-11/1
		4) Maximum usable frequency.		
		4) Maximum usable frequency.		
		1)Virtual height:-The incident and refracted same as they have been if reflection had tak height, called Virtual height of this layer		
	Ans:	 2) Actual height:-The actual height of the w due to refraction of wave. The height from theight. 3) Critical frequency: The critical frequence frequency that is returned back to the earth an angle 90⁰ (normal) to it. The critical frequency for F2 layer is between the set of the	this curve to earth surface is called actual cy of a layer is defined as the maximum by that layer, when the wave is incident at	Each correct definition carries 1 mark
		4) Maximum usable frequency : The limitities other than the normal is known as maxim		
		$MUF = fc \ sec\theta$		
	b)	Compare narrow band FM with wide ba	nd FM (fourpoints).	4M
		Narrow band FM	Wide band FM	
		1 .Modulation Index is less than or	1. Modulation Index is greater than 1.	
		slightly greater than 1.	2 Marine lasidi i 75 KH	
		2.Maximum deviation is 5 KHz.3.Range of modulating frequency is 30	2. Maximum deviation is 75 KHz.3. Range of modulating frequency is 30	
		Hz to 3KHz	Hz to 15KHz	1 mark for
	Ans:	4. Bandwidth is small approximately same as that of AM.	4. Bandwidth is large about 15 times higher than bandwidth of Narrow band FM.	each correct point
		5.Application:-FM mobile communication like police wireless, ambulance etc.	5. Application:-Entertainment broadcasting.	



		The folded dipole with one or two directors and reflectors give high gain and beam width per unit area of array.	
Q.5		Solve any TWO :	12-Total Marks
	a)	Explain ionospheric propagation with neat sketch. Explain two properties of layers of ionosphere.	6M
		Diagram :	Diagram 2M
	Ans:	 Explanation: The transmitted signal travels into the upper atmosphere where it is reflected back to earth due to the presence of layers called as ionosphere in the upper atmosphere. The D layer is the lowest and it exist at a height of about 70 Km from the earth surface. The E layer existing at an approximate height of 100 Km. The E layer also almost disappears at night due to recombination of ions and molecules. The E layer is a thin layer of very high ionization density, sometimes making an appearance with the E layer. The F1 layer exist at a height of 180Km in daytime & combines with F2 layer at night its daytime thickness is almost 20Km. 	Explanation 2M
		The Ionosphere is the upper portion of the atmosphere. The ultra violet radiation from the sun will ionize the upper layer of the atmosphere. Due to ionization these part of the atmosphere becomes electrically charged. In this layer free electrons and positive and negative ions are present and hence this layer of ions is known as ionosphere. There are four layers: D, E, F1 and F2. Properties of layers of ionosphere:- 1. D Layer: It is lowest layer at a height of 70 kms with thickness 10 km. The	Any Two Properties of layer -2 M

	 ionization density is maximum at noon and disappears at night. 2. E Layer: It is the next layer at a height of 100 kms with thickness 25 km. The layer disappears at night due to recombination of ions and molecules. 3. F1Layer: It is the next layer at a height of 180 kms with thickness 20 km. It provides more absorption for HF waves. 4. F2Layer: It is the next layer at a height of 250-400 kms with thickness 200 km. It is having highest electron density of all layers, due to this F2 layer remains present at night time. 	
b)	i) State the significance of modulation index in AM transmission.ii) Explain the effect of modulation index on AM wave with waveforms.	6M
Ans:	 Significance of modulation index in AM transmission It is used to determine the strength and quality of transmitted signal. If the modulation index is small, then the amount of variation in the carrier amplitude is small. Thus, the audio signal transmitted will not be strong. The greater the degree of modulation, die stronger and clearer will be the audio signal during reception. Effect of modulation index on AM wave i) m < 1 If m < 1 or if the percentage of modulation is less than 100% the this type of modulation is known as under modulation The amplitude of modulating signal less than carrier amplitude, no distortion will occur. ii) m = 1 If m = 1 or percentage of modulation is 100 this type modulation is 100% modulation. The ideal condition for AM is m =1, since this will produce the greatest output at the receiver with no distortion. 	Significance 3M & three conditions 1M each



Q.6		 Horn Antenna Used at microwave frequency. Used in satellite tracking. Loop Antenna For direction finding In portable receivers In navigation Yagi-Uda antenna Yagi-Uda antenna is used in HF and VHF range as a TV receiving antenna. Yagi-Uda antenna is used in conditional Access System (CAS) at the decryptor. Attempt any TWO: 	12-Total Marks
	a)	Describe operating principle of dish antenna. Draw its constructional details and radiation	6M
	Ans:	Operating principle: Dish antenna uses simple reflection principle, just as a mirror can reflect light and a curved mirror can reflect and focus light at a single point, the dish reflects and focuses the radio waves. This is the same principle and shape that is used as reflector in a flashlight or headlight behind the bulb. Dish antennas are used for systems that transmit and receive as well as receive only. Dish antenna Focus Parabolio reflector Soberical reflector at the focus the focus	(Operating Principle:2 M,Construct ion:2M,Radi ation pattern:2M)

=0.78	
$P_t = P_C (1+m_a^2/2)$	
$=10(1+(0.78)^2/2)$	
=13.05 kW	

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MAHARASHT (Autonomous) (ISO/IEC - 2700 CBOARD OF TECHNICAL EDUCATION rtified)

SUMMER-19 EXAMINATION

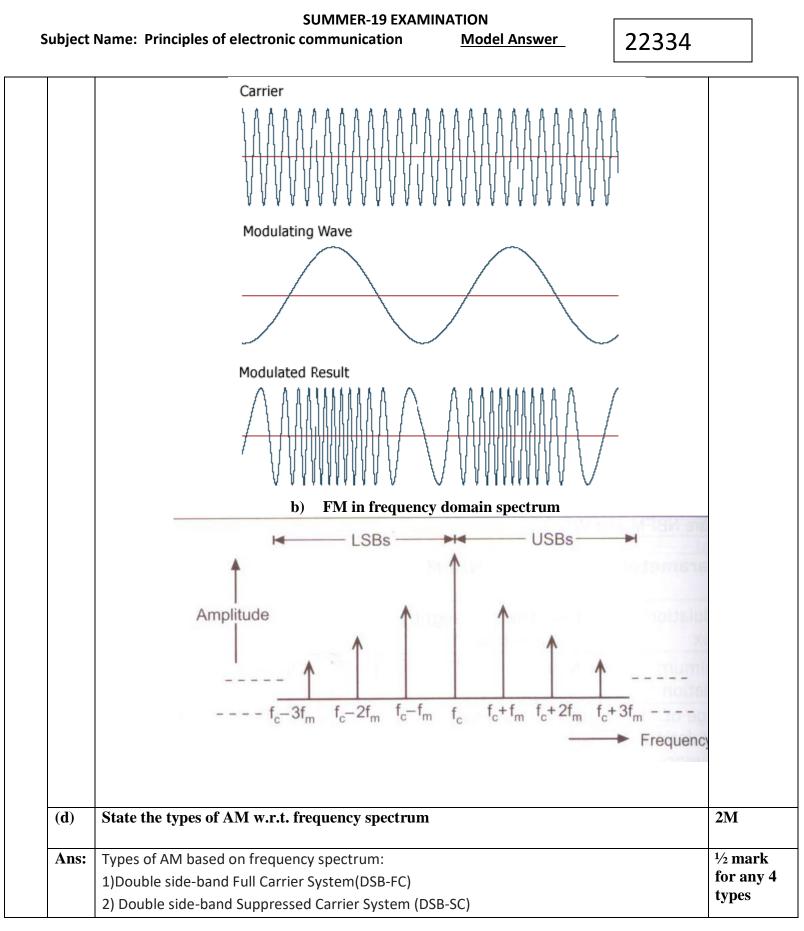
Subject Name: Principles of electronic communication Model Answer

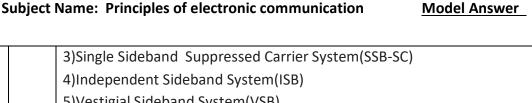
22334

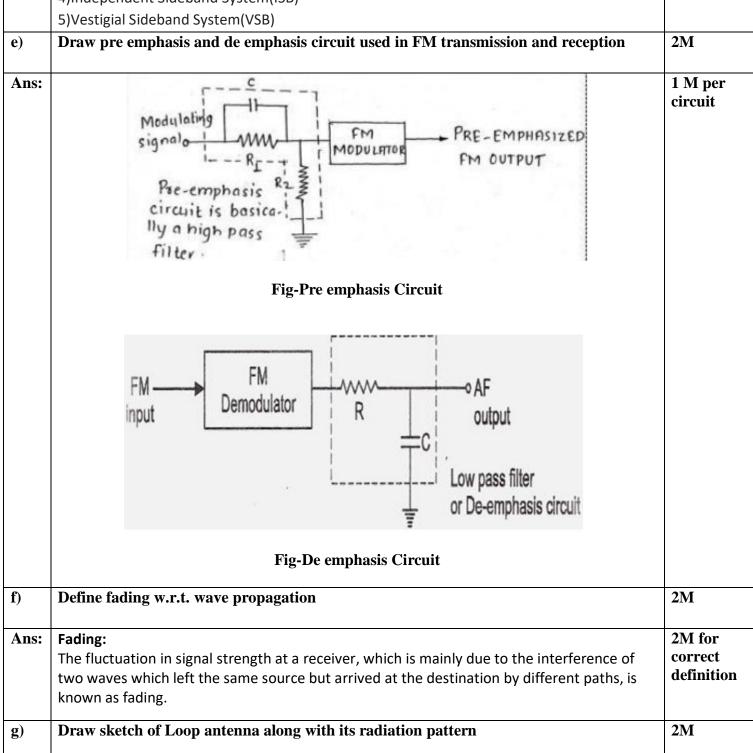
Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

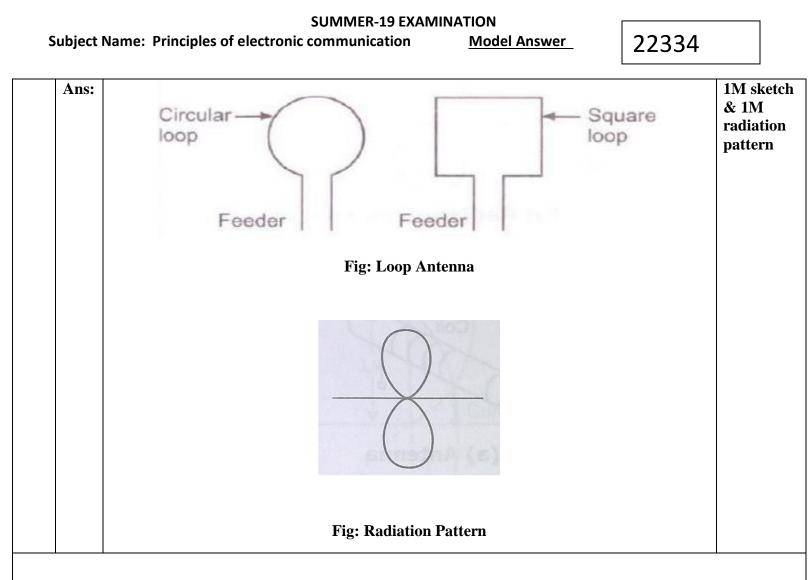
Q. No.	Sub Q. N.	Answers	Marking Scheme
1	(A)	Attempt any FIVE of the following:	10- Total Marks
	(a)	Define simplex and half duplex system with neat sketch	2M
	Ans:	Simplex System: - The system in which the information is communicated only in one direction, called as simplex system e.g. TV broadcasting or radio. Tx Rx Simplex Simplex Fig: Simplex System Rate of the system of the sys	1M per system(1/2 mark definition &1/2 mark sketch)




Subject Name: Principles of electronic communication


Model Answer

	Tx Rx Tx Rx Half duplex	
	Fig: Half Duplex System	
(b)	Define term signal to noise ratio.	2M
Ans:	Signal to Noise ratio : The ratio of the strength of an electrical or other signal carrying information to that of unwanted interference is called as signal to noise ratio. OR	2 M fo correc definit
	Signal to Noise Ratio is defined as the ratio of signal power to the noise power at the same point.	
	S/N=Ps/Pn	
	where,Ps=Signal Power	
	Pn=Noise Power at the same point	
(c)	Represent FM wave in time domain and frequency domain	2M
Ans:	a) FM in time domain spectrum	1M for each domai


MAHARASHT (Autonomous) (ISO/IEC - 2700 : tified)

Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any THREE of the following:	12- Total Marks
	a)	Explain the sources of noise in communication system	4 M
	Ans:	Noise: Noise is any spurious or undesired disturbances that mask the received signal in a communication system. a) Atmospheric Noise : Atmospheric Noise is also known as static noise which is the natural source of disturbance caused by lightning, discharge in thunderstorm and the natural disturbances occurring in the nature.	Any 4 source with ief explanatio m
		b) Industrial Noise : Sources of Industrial noise are auto-mobiles, aircraft, ignition of electric	

Subject Name: Principles of electronic communication Model Answer

motors and switching gear.
c) Extraterrestrial Noise exist on the basis of their originating source.TheyareSolarNoiseii) Cosmic NoiseVoiseVoiseVoise
Internal Noise are the type of Noise which are generated internally or within the Communication System or in the receiver. They are as follows:
1) Shot Noise : These Noise rises in the active devices due to the random behaviour of Charge particles or carries. In case of electron tube, shot Noise is produces due to the random emission of electron form cathodes.
2) Partition Noise : When a circuit is to divide in between two or more paths then the noise generated is known as Partition noise. The reason for the generation is random fluctuation the division.
3) Low- Frequency Noise : They are also known as FLICKER NOISE. These type of noise are generally observed at a frequency range below few kHz. Power spectral density of these noise increases with the decrease in frequency. That why the name is given Low- Frequency Noise.
 4) High- Frequency Noise : These noises are also known TRANSIT- TIME Noise. They are observed in the semi-conductor devices when the transit time of a charge carrier while crossing a junction is compared with the time period of that signal. 5) Thermal Noise : Thermal Noise are random and often referred as White Noise or Johnson Noise. Thermal noise are generally observed in the resistor or the sensitive resistive components of a complex impedance due to the random and rapid movement of molecules or atoms or electrons.
Dark current noise: When there is no optical power incident on the photodetector a small reverse leakage current still flows from the device terminals. This Dark current contributes to the total system noise and gives random fluctuations about the average particle flow of the photocurrent. The Dark current noise is given by:
$i_d^2 = 2eBI_d$ where e is the charge on an electron
Id is the dark current \Rightarrow Quantum noise: Discrete nature of electrons cause a signal disturbance called Quantum noise or Shot noise.It arises from the statistical nature of the production and collection of photoelectrons. It is given by $i_s^2 = 2eBI_p$

Subject Name: Principles of electronic communication Model Answer

	Ip is the photocurrent	
b)	Explain power relation in AM wave	
Ans:	i) The Total power in AM (Pt) : $Pt = (Carrier power) + (Power in USB) + (Power in LSB)$ $Pt = P_{C} + P_{USB} + P_{LSB}$ $\therefore Pt = \frac{Er^{2}carr}{R} + \frac{Er^{2}USB}{R} + \frac{Er^{2}LSB}{R}$ (1 mark) Where, E_{rcarr} , E_{rUSB} , $E_{rLSB} = R.M.S.$ values of the carrier and side band amplitudes	4M for correct answer
	R = characteristics resistance of antenna in which total power is dissipated. OR ii) Carrier power (Pc):	
	$Pc = \frac{Er^2 carr}{R}$ $= \frac{(E\sqrt{2})^2}{R}$	
	$Pc = \frac{E^2 c}{2R}$ Where, Ec = Peak carrier amplitude	
	OR	

MAHARASHT (Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Subject Name: Principles of electronic communication Model Answer

The power in USB and LSB is same as, $P_{USB} = P_{LSB} = \frac{Er^2 SB}{R}$ Peak amplitude of sideband = $\frac{mEc}{2}$ \therefore $P_{USB} = P_{LSB} = \frac{(mEr2\sqrt{2})^2}{R}$ $= \frac{m^2 E^2 c}{8R}$ \therefore $P_{USB} = P_{LSB} = \frac{m^2}{4} X \frac{E^2 c}{2R}$ $= \frac{E^2 c}{2R} = Pc$	
Peak amplitude of sideband = $\frac{mEc}{2}$ \therefore P _{USB} = P _{LSB} = $\frac{(mEr2\sqrt{2})^2}{R}$ $= \frac{m^2 E^2 c}{8R}$ \therefore P _{USB} = P _{LSB} = $\frac{m^2}{4} \ge \frac{E^2 c}{2R}$	
$\therefore \qquad P_{\text{USB}} = P_{\text{LSB}} = \frac{(m\text{Er}2\sqrt{2})^2}{R}$ $= \frac{m^2 E^2 c}{8R}$ $\therefore \qquad P_{\text{USB}} = P_{\text{LSB}} = \frac{m^2}{4} X \frac{E^2 c}{2R}$	
$= \frac{m^2 E^2 c}{8R}$ $\therefore \qquad P_{\text{USB}} = P_{\text{LSB}} = \frac{m^2}{4} X \frac{E^2 c}{2R}$	
$\therefore \qquad P_{\text{USB}} = P_{\text{LSB}} = \frac{m^2}{4} X \frac{E^2 c}{2R}$	
$\frac{E^2c}{E} = \mathbf{p}_{\mathbf{c}}$	1
$\frac{1}{2R}$	
$\therefore \qquad \mathbf{P}_{\mathrm{USB}} = \mathbf{P}_{\mathrm{LSB}} = \frac{m^2}{4} \mathbf{P}_{\mathrm{C}}$	
Or	
l power in AM :	
power in AM is,	
$\mathbf{Pt} = \mathbf{Pc} + \mathbf{P}_{\mathrm{USB}} + \mathbf{P}_{\mathrm{LSB}}$	
$= \mathbf{P}\mathbf{c} + \frac{m^2}{4}\mathbf{P}\mathbf{c} + \frac{m^2}{4}\mathbf{P}\mathbf{c}$	
$Pt = \left(1 + \frac{m^2}{2}\right) Pc$	
Duct propagation with neat sketch	4M
pagation: (Microwave Space Wave Propagation)	2M diagram & 2M
Top of atmospheric duct	explanatio n
Ground surface Waves trapped in duct	
al	or al power in AM is, $Pt = Pc + P_{LSR} + P_{LSR}$ $= Pc + \frac{m^2}{4}Pc + \frac{m^2}{4}Pc$ $Pt = (1 + \frac{m^2}{2})Pc$ Duct propagation with neat sketch opagation: (Microwave Space Wave Propagation) Top of atmospheric duct Ground surface

N.

SUMMER-19 EXAMINATION

Subject Name: Principles of electronic communication Model Answer

Q. No.	Sub Q.	Answers	Marking Scheme
	Ans:	The beamwidth of an antenna is described as the angles created by comparing the half power points (3 dB) on the main radiation to be its maximum power points. $\underbrace{\begin{array}{c} & & \\ $	2M diagram & 2M explanatio n
	d)	The region in which super refraction takes place is called duct.Explain the term beam width related to antenna with a sketch	4M
		These waves then then propagate around the curvature of the earth over a distance of 1000 Km.	
		Microwaves are thus continuously refracted inside the duct and reflected back by the conducting ground or water surface.	
		Due to this rapid reduction of refractive index, the microwave will completely bend back towards the earth surface.	
		Due to this the refractive index will decreases more rapidly with height than usual. This happens near the ground normally within a distance of 30 meters above the surface.	
		However under certain special atmospheric condition, a layer of warm air may get trapped above the cooler air. This happens usually over the surface of the water.	
		As the height above the earth increases, the air density decreases and the refractive index increases. The change in the refractive index is normally linear and gradual.	
		It is observed at very high microwave frequencies.	
		Duct propagation is the special type of phenomenon which is also called as "super refraction".	

Subject Name: Principles of electronic communication Model Answer

	Attempt any THREE of the following :	12- Tota Marks
a)	A 500 watts carrier is modulated to depth of 80%	4M
	Calculate :	
	(i) Total power in AM	
	(ii) Power in side bands	
Ans		2M-for each calculation
	Given -; Pc = 500 watts	
	m = 80% = 0.8	
	i) Total Power in $AM = \frac{1}{2} - \frac{1}{2}$	
	$P_{t} = \left(1 + \frac{m^2}{2}\right) \cdot P_{c}$	
	$= (1 + 0.8^2) \times 500$	
	$= (1 + 0.8^{2}) \times 500$ $P_{t} = 660 \text{ watt}$	
	ii) Power in side bands =; _ (2M)	
	$P_{\rm USB} = P_{\rm LSB} = \frac{m^2}{4} \times P_{\rm c}$	
	$= \frac{0.8^2}{4} \times 500$	
	Scanned with PUSB = PLSB = 80 watt	
b)	A frequency modulated signal is represented by the voltage equation	4M
	$e_{fm} = 10 \sin (6 \times 10^8 t + 5 \sin 1250 t)$	
	calculate :	
	(i) Carrier frequency f _c	
	(ii) Modulating frequency f _m	
	(iii) Maximum deviation	

Subject Name: Principles of electronic communication Model Answer

	(iv) What power will this FM wave dissipate in 20 Ω resistor					
Ans:		1M for				
		each				
	Soln - A frequency modulated signal is given by-	calcula				
	$e_{FM} = 10 \sin(6x10^8 \pm +5 \sin 1250 \pm)$	n(each				
	i) Carrier Frequency, fc -:	value)				
	As we know					
	eFM = 10 sin (6x18t + 5 sin 1250t) (gixen) -(1)					
	And,					
	The standard expression for FM wave is					
	$e_{FM} = E_e \sin \left[(2\pi f_e t) + m_f \sin (2\pi f_m t) \right] - (2)$					
	(omparing eqn (1) and eqn (2)					
	$e_{FM} = 10 \sin(2\pi f_c t + \frac{\sigma}{fm} \sin \omega m t)$ $= 2\pi f_c = 6 \times 10^8$					
	$\frac{2\pi f_c}{6} = 6 \times 10^8$					
	$f_{c} = \frac{6 \times 10^{8}}{21T} \approx 95.492 \times 10^{8} \text{ Hz}$					
	-: Carrier Frquency = 95.5 MHZ					
	ii) Modulating Frequency, fm =: Again.					
	$W_m = 2\pi f_m = 1250$					
	$\frac{1}{2\pi} = \frac{1250}{2\pi} = 198.94 \text{ Hz}$					
	. Modulating Frequency, fm = 198.94 Hz					
	iii) Maximum deviation of the					
	(11) $f(x) = 5$ $f(x) = 5 \times 198.94$ (:: $f(x) = 198.94 Hz$) f(x) = 994.72 Hz					
	. OFM = 111 12 112					
	: Maximum deviation, J=994.72 HZ					
	iv) Power dissipation in 20 r resistor, P=: $P = \frac{\sqrt{2}ms}{R} = \frac{(\sqrt{c}/J_2)^2}{R}$					
	$P = \frac{(10/J_2)^2}{20} + \dots + (:: Given V_c = 10V, R = 20.2)$					
	2P= 2.5 W					
	CS Scanned with dissipated in 201 resistor, P= 2.5W					
c)	Compare between simple AGC and delayed AGC	4M				
()	Compare between simple AGC and uclayed AGC					

Subject Name: Principles of electronic communication

Model Answer

Ans:	Output Signal Level No A	GC Delayed AGC Simple AGC Ideal AGC Ideal AGC		(1M f each correc point)	
	Parameter	Simple AGC	Delayed AGC		
	i) Definition	Simple AGC is a system by means of which overall gain of a radio receiver is varied automatically	Delayed AGC is a system which does not reduce the gain for weak signals but reduces the gain for strong signals only.		
	ii)Advantages	Simplicity,Low cost	High cost	-	
	iii)Applications	Simple AGC circuit is used in all the low cost domestic radio receiver.	Delayed AGC is used in the high quality receivers like communication receivers.		
	iv)Characteristics	Refer Fig Fig 3C – The AGC characteristics	Refer Fig Fig 3C – The AGC characteristics		
d)	Compare resonant and non resonant antenna on the basis of				
(1)					
	(i) Definition				
)	(i) Definition(ii) Circuit				
_,		ıt			
	(ii) Circuit	ıt			

Subject Name: Principles of electronic communication Model Answer

	Parameter		Resonant an	itenna	Non re	sonant antenna	Param
	i) Definition			ssion Line of to multiples of n at both end.		nsmission line whose is not a multiple of	
	ii) Circuit		Conductor 1 Conductor 2	Standing waves	Source	Antenna R (Correct termination	
	(iii) Reflection	co efficient	Standing	wave present	Standi	ng wave not present	
	(iv) Radiation pa	attern				8	
e)	Differentiate bet	ween ground	wave and sky	y wave propagat	tion		
Ans:	Sr. No		neters	Ground Wave Propagation		Sky Wave Propagation	g Any F releva correc
	1	Freque	ency Range	30 kHz to 3 M	Hz	3 MHz to 30 MHz	points mark

Subject Name: Principles of electronic communication

Model Answer

3	Applications	Radio Broadcasting (MW Range)	Radio Broadcasting (SW Range)
4	Range of Communication	Less (OR) Few hundred Km	More (OR) Few Thousand Km
5	Limitations	Limited Range, Tall Antenna Required, High transmission power.	Skip Distance, Power loss due to absorption of energy in layers
6	Fading Problem	Less	Severe

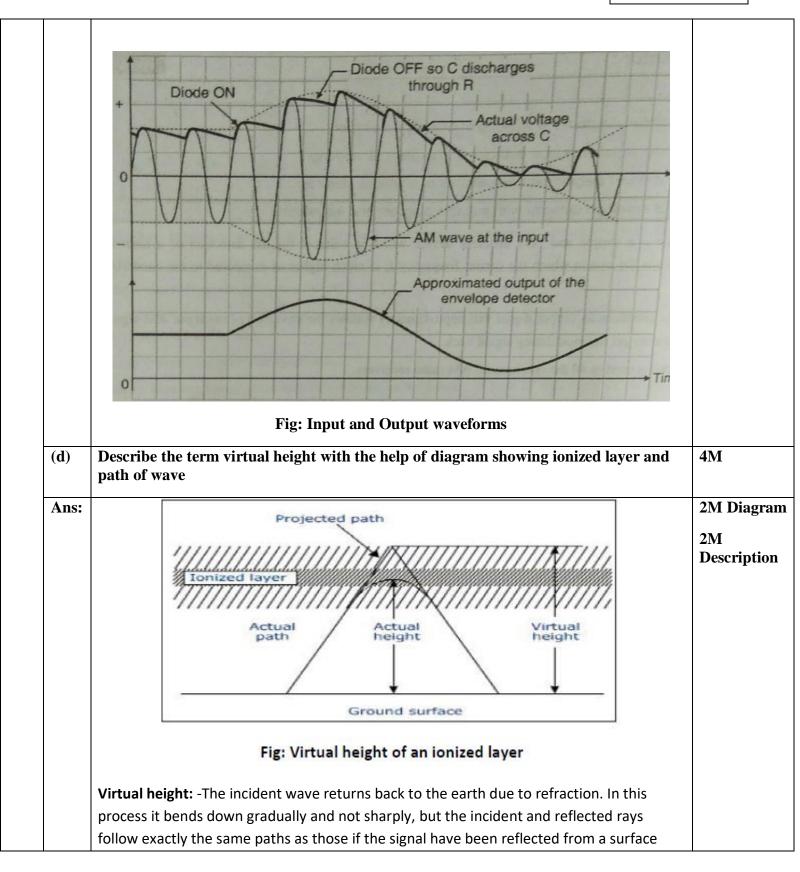
Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any THREE of the following :	12- Total Marks
	(a)	Draw the block diagram of basic electronic communication system	4M
	Ans:	Information Source Transmitter Communication Channel Receiver Destination Noise	4M for correct block diagram
		Fig: Basic electronic communication system	

Subject Name: Principles of electronic communication

(Autonomous) (ISO/IEC - 2700 rtified)

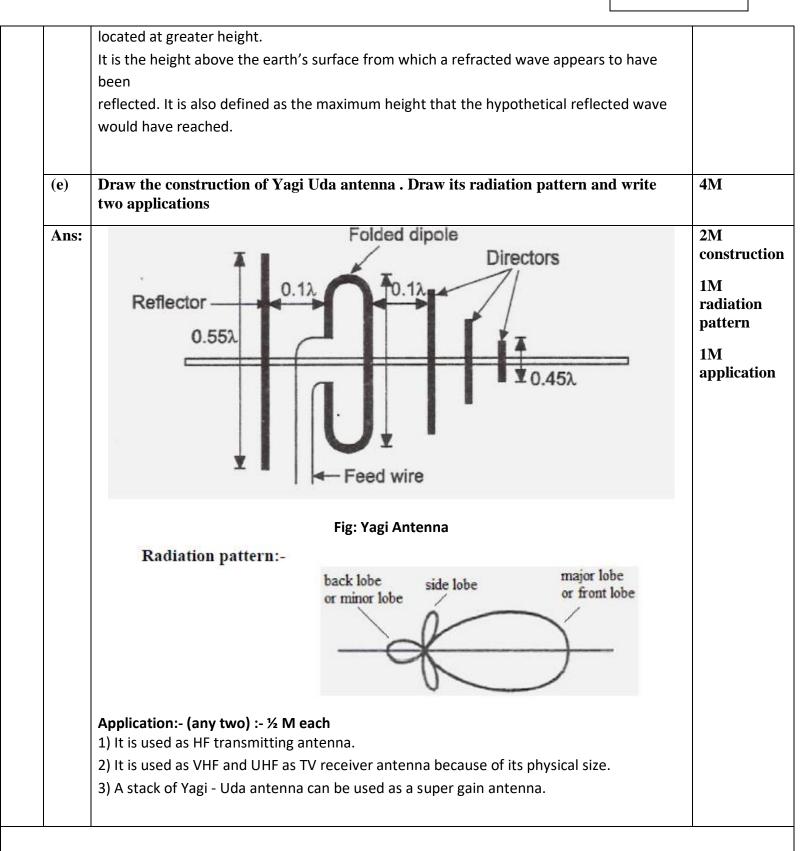
LONG CO

MAHARASHT


SUMMER-19 EXAMINATION

Model Answer

(b)			& FM on the basis of		4M
	(i) Defi				
	(ii) Ba	nd width			
	(iii) M	odulation index			
	(iv) An	oplication			
	(·P······			
Ans:	SR.	PARAMETER	AM	FM	1M-Each
A115.	NO				differenc
	1	Definition	Amplitude of the carrier	Frequency of the carrier signal is	
			signal is varied in accordance to the	varied in accordance to the instantaneous value of the	
			instantaneous value of the	modulating signal keeping	
			modulating signal keeping	amplitude and phase of carrier	
			frequency and phase of	constant.	
			carrier constant.		
	2	Modulation Index	V_m	δ_m	
			$m = V_c$	$Mf = f_{m(max)}$	
	3	Bandwidth	BW = 2 fm	$BW = 2 (\delta + fm (max))$	
	4	Application (any	Video transmission in TV	Sound transmission in TV	
		relevant point to be considered)	receivers etc.	receivers etc.	
(c)	Draw t		of practical AM diode det	ector. Sketch its input and output	4M
(-)	wavefo	_			
Ans:					(2M-Cire
Апь.					Diagram
		0		R ₃	Diagram
	10	10		AGC Out	2M
	AIR	mt	LPF	(DC)	waveform
			R ₁	〒 C ₃ 1, pp	
	AM				
	Signa			T T	
	Fron	이 누 ㅋㅌ +	$= c \perp \perp c$	AE output	
	IF Amp	00			
	Tunp				
				\cup	
					
		Hige Circs	uit diagram of Practical A	M diode detector	



SUMMER-19 EXAMINATION Subject Name: Principles of electronic communication <u>Model Answer</u>

Subject Name: Principles of electronic communication Model Answer

Subject Name: Principles of electronic communication

SUMMER-19 EXAMINATION

Model Answer

Q. No.	Sub Q. N.	Answers				Marking Scheme
5.		Attempt any TWO of the following:				
	a)	Write down the range of different frequencies in electro magnetic spectrum for following : (i) Voice frequency (ii) High frequency (iii) Infra red frequency				6M
	(iv) Visible spectrum (light)(v) Radio frequency					
		(vi) UV frequency Also write one application area of each frequency				
	Ans:	Sr No.	Frequency	Range	Application	1M each for
		1	Voice frequency	300 Hz to 3KHz	transmission of speech	correct range & applicati
		2	High frequency	3MHz to 30 MHz	SW band of AM Rx	on
		3	Infra red frequency	3 THz to 30 THz	Used for directed links e.g. to connect different buildings via laser links.	(1/2 M range & 1/2 M applicati on)
		4	Visible spectrum (light)	375 THz to 750 THz	Smart Lighting,Mobile Connectivity	
		5	Radio frequency	3 kHz-300 GHz	radar signals or communications	

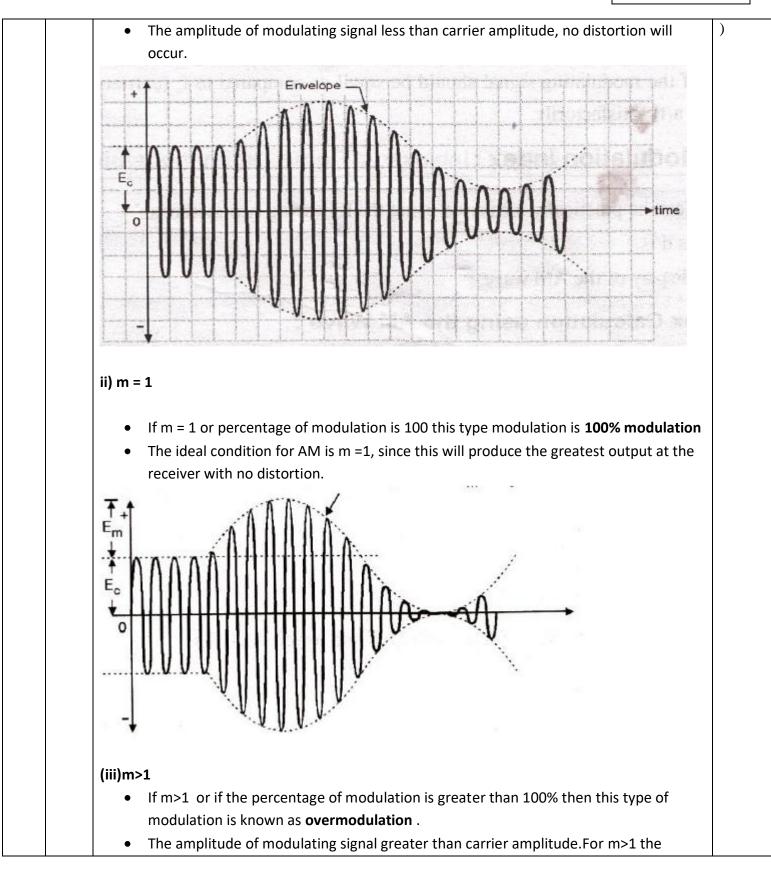
SUMMER-19 EXAMINATION

Subject Name: Principles of electronic communication Model Answer

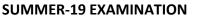
	6	UV frequency	3 - 30 PHz	Pool purification	water n		
b)	Explain why the loca frequency in radio re turned to 1000kHz. I	eceiver. A Suprehetre	odine radio receiver	with an IF of 45		6M	
Ans:	Reason for local osci	llator frequency to be	greater than signal	frequency in radio	o receiver:	3M for	
	The local oscillator fre	equency is made great	er than signal freque	ncy in radio receiv	ver.	correct answer &	
	Local oscillator freque	ency range is 995 KHz	to 2105 KHz for MW	band.		3M for Numeric	
	Fmax/Fmin=2105/995=2	2.2				S	
	If local oscillator has been designed to be below signal frequency, the range would be 85 to						
	1195KHz and frequency ratio is F _{max} /F _{min} =1195/85=14.0 The normal tunable capacitance ratio is C _{max} /C _{min} =10						
	So this capacitance ratio easily gives the frequency ratio of 2:2:1						
	Hence the 2:2:1 ratio required for the local oscillator operating above signal frequency is well within range whereas the other system has a frequency ratio of 14:1 whose capacitance are not practically available.						
	Numerical:						
	A signal (image) can interfere with a superheterodyne receiver if fits the following equation.						
	Image = Signal +/- 2 x I.F.						
	Which says that a signal has the capacity to interfere with a superhet receiver if its frequency is equal to the signal frequency (1000 kHz in our question) plus or minus twice the IF (455 kHz in our question).						
	So one possible image is: 1000 + (2 x 455) = 1910 kHz						
	And the other: 1000 - (2 x 455) = 90 kHz						
	local oscillator freque	ncy=455 + 1000 =145	5 KHz				
c)	Name the different la	ayers of atmosphere	which satisfy followi	ing conditions :		6M	
	(i) Reflects LF, absor	rbs MF and HF wave	es to some degree				

Subject Name: Principles of electronic communication

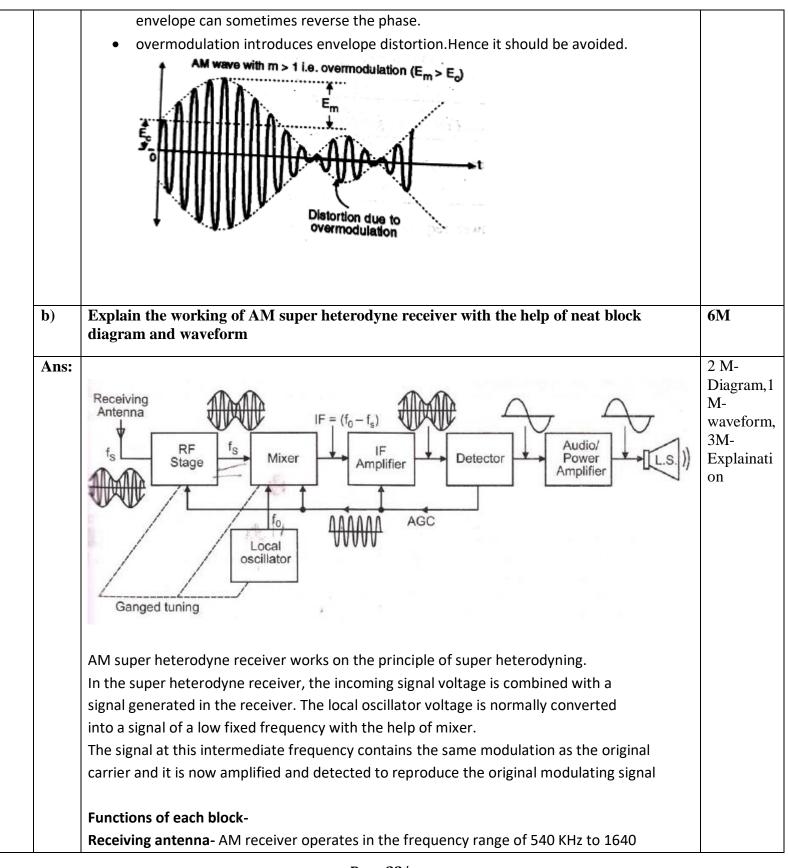
SUMMER-19 EXAMINATION


Model Answer

		(ii) Helps surface waves an	d reflect HF waves		
		(iii)Partially absorbs HF w	aves yet allowing them to reach	its upper layer	
		(iv) Efficiently reflects HF			
		(v) Exists in day time only	······································		
			merges with F2 layer in night tir	ne	
	Ans:	Sr No.	Name of the layer of atmosphere	Frequencies most affected	1M each
		1	D (Part of Stratosphere)	Reflects LF, absorbs MF and HF waves to some degree	
		2	E(Part of Stratosphere)	Helps surface waves and reflect HF waves	
		3	F1 (Part of mesosphere)	Partially absorbs HF waves yet allowing them to reach its upper layer	
		4	F2 (Thermosphere)	Efficiently reflects HF waves , specially in night	
		5	D & E (Part of Stratosphere)	Exists in day time only	
		6	F1 (Part of mesosphere)	Exists in day time but merges with F2 layer in night time	
Q. No.	Sub Q. N.		Answers		Marking Scheme
6.		Attempt any TWO of the f	ollowing :		12- Total Marks
	a)	Explain the effect modulation	ion index on AM wave with wav	eforms for	6M
		(i) m<1			
		(ii)m=1			
		(iii)m>1			
-	Ans:	-	entage of modulation is less than as under modulation .	100% then this type of	(2 M for each effect with waveform



SUMMER-19 EXAMINATION


Model Answer

Model Answer

BOARD OF TECHNICAL EDUCATION

Subject Name: Principles of electronic communication

rtified)

MAHARASHT

(Autonomous) (ISO/IEC - 2700

SUMMER-19 EXAMINATION

Model Answer

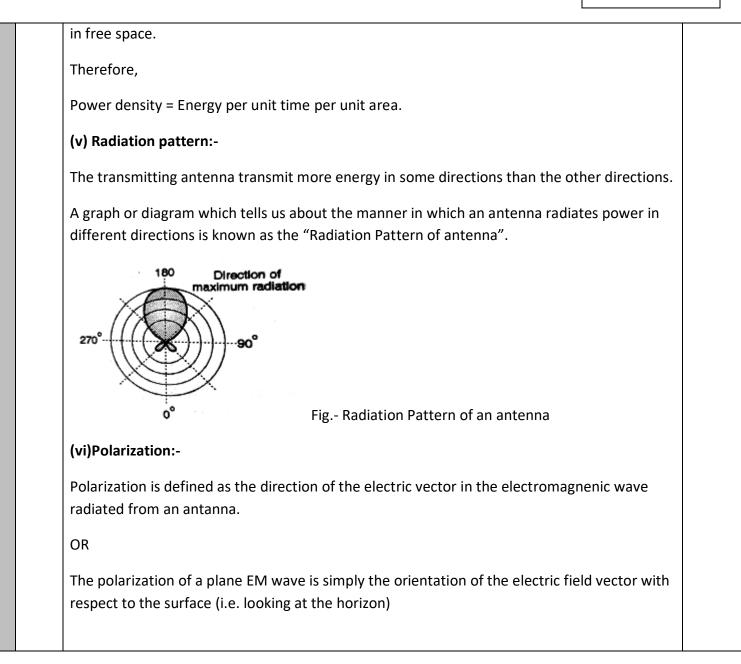
	KHz.	
	RF stage- Selects wanted signal and rejects all other signals and thus reduces the	
	effect of noise.	
	Mixer - Receives signal from RF stage Fs and the local oscillator Fo, and are mixed to	
	produce intermediate frequency signal IF which is given as:	
	IF=Fo-Fs	
	Ganged Tuning- To maintain a constant difference between the local oscillator and	
	RF signal frequency, gang capacitors are used.	
	IF stage- The IF signal is amplified by the IF amplifier with enough gain.	
	Detector-Amplified signal is detected by the detector to get original modulating	
	signal. The detector also provides control signals to control the gain of IF and RF	
	stage called as AGC.	
	AGC- Automatic gain control controls the gain of RF and IF amplifiers to maintain a	
	constant output level at the speaker even though the signal strength at the antenna	
c)	varies. Explain following terms in short related to antenna	6M
C)		UIVI
	(i) Antenna resistance	
	(ii) Directivity	
	(iii)Antenna gain	
	(iv)Power density	
	(v) Radiation pattern	
	(vi)Polarization	
Ans:	(i)Antenna resistance:-	1 M fo
	The resistance of an antenna has two components:	each correc
	1. Its radiation resistance due to conversion of power into electromagnetic waves	definit
	2. The resistance due to actual losses in the antenna.	
	or	
	The antenna resistance has two components:	
	1.Radiation resistance: it is defined as the ratio of the power radiated by the antenna to	
	square of the current at the input of the antenna feed point.	
	Pt	
	$Rr = \frac{1}{I^2}$	

rtified)

TONER O

MAHARASHT

(Autonomous) (ISO/IEC - 2700


SUMMER-19 EXAMINATION

Model Answer

Where
Pt is radiated power by antenna
I is the current at feed point
2.Resistance due to actual losses in the antenna
(ii).Directivity:-
The directive gain can be defined in any direction. However directivity means the maximum
directive gain which is obtained in only one direction in which the radiation is maximum.
Therefore Directivity = Maximum Directive gain.
OR
The directive gain is defined as the ratio of the power density in a particular direction of one
antenna to the power density that would be radiated by an omnidirectional antenna (isotropic antenna).
The maximum directive gain is called directivity.
(iii)Antenna gain:-
Antenna Gain –
The directional antenna radiate more power in certain direction. The Omni-directional antenna radiates information equally in all directions.
Or
Antenna gain
It is the ratio of focused transmitted power (Pt) to the input power of the antenna (Pi) Or
Antenna gain: antenna gain is defined as the ratio of the power density radiated in a
particular direction to the power density radiated to the same point by the reference antenna.
(iv)Power density:-
The EM waves cause the energy to flow from one point to the other in the direction of
propagation.
The power density is defined as the rate at which energy passes through a given surface area

SUMMER-19 EXAMINATION

Model Answer

V2V EDTECH LLP

Online Coaching at an Affordable Price.

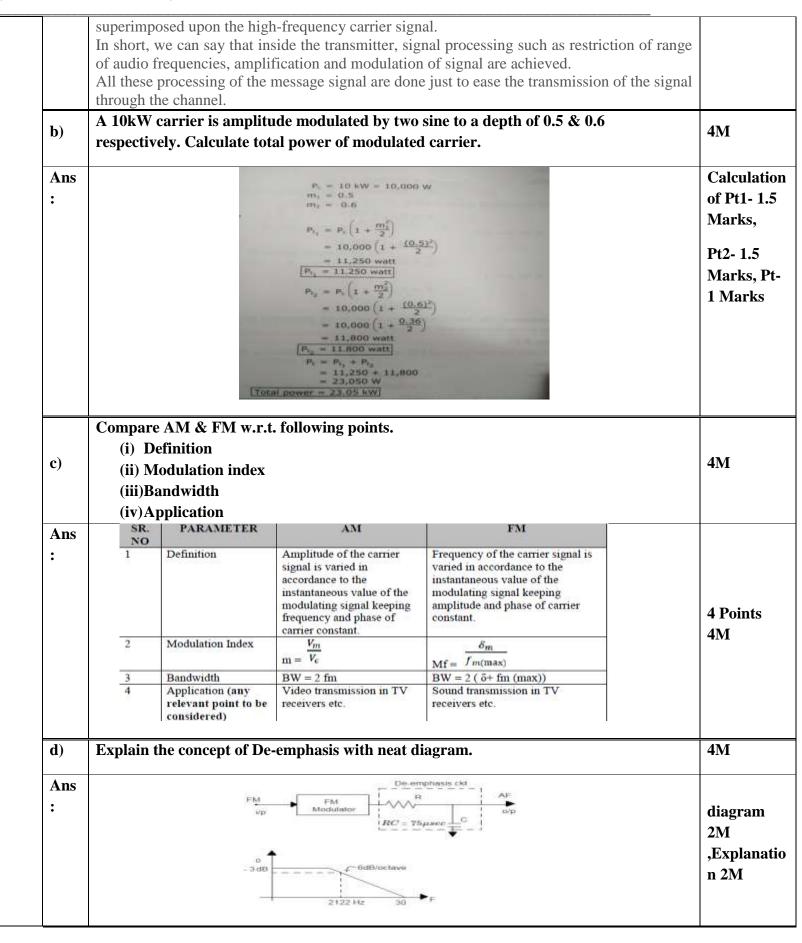
OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

WINTER -	19EXAMINATION
	TUCKANINALION

Subject Name: Principles of Electronic Communication Model Answer Subject Code:

Important Instructions to examiners:


- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
Q.1		Attempt any FIVE of the following:	10 M
	a)	Define the term signal to noise ratio.	2M
	Ans:	Signal to Noise ratio: The ratio of the strength of an electrical or other signal carrying	Definiti
		information to that of unwanted interference is called as signal to noise ratio.	on: 2
		OR	marks
		Signal to Noise Ratio is defined as the ratio of signal power to the noise power at the same	
		point. S/N=Ps/Pn	
		where,Ps=Signal Power	
		Pn=Noise Power at the same point	
	b)	Define modulation index of FM.	2M
	Ans:	Modulation index of FM is defined as the ratio of the frequency deviation to	2M
		the modulating frequency. $M.I. = \nabla / fm$	
		Where ∇ - frequency deviation	
		Fm- modulating frequency	
	c)	Write Carson's rule to calculate BW of FM wave.	2M
	Ans:	Carson's Rule for FM bandwidth	rule
		B.W. = $2(\Delta f + fm)$	2M
		Where:	
		$\Delta f = deviation$	
		fm = modulating frequency	
	d)	Draw the labelled circuit dia. Of ratio detector.	2M

Ans	FM input thom f_{input}	Ckt. Diagra m: 2 marks
e)	Write the IF value of (i) FM ratio recevier. (ii) MW band AM.	2M
Ans	(i) 10.7 Mhz (ii) 455 Khz	1 mark each
f)	Define fading w.r.t. wave propagation.	2M
Ans	Fading: The fluctuation in signal strength at a receiver, which is mainly due to the interference of two waves which left the same source but arrived at the destination by different paths, is known as fading.	Definiti on 2M
g)	Sketch the radiation pattern of Yagi-Uda antenna.	2M
Ans	Radiation pattern:- back lobe side lobe or front lobe or minor lobe	Pattern 2M

Q.2		Attempt any THREE of the following:	12 M
	a)	Draw the basic block diagram of Electronic communication system. State the function of transmitter.	4M
	Ans	Block diagram:	Block
	:	Information Destination Destination	diagram: 2
		Source Transmitter Channel Heceiver	Marks,
		• Transmitter	
		The function of the transmitter is to process the electrical signal from different aspects.	Function: 2
		For example in radio broadcasting the electrical signal obtained from sound signal, is processed to restrict its range of audio frequencies (up to 5 kHz in amplitude modulation radio broadcast) and is often amplified.	Marks
		In wire telephony, no real processing is needed. However, in long-distance radio	
		communication, signal amplification is necessary before modulation.	
		Modulation is the main function of the transmitter. In modulation, the message signal is	

		 In the De-emphasis circuit, by reducing the amplitude level of the received high frequency signal by the same amount as the increase in pre-emphasis is termed as De-emphasis. The pre-emphasis process is done at the transmitter side, while the de-emphasis process is done at the receiver side. Thus a high frequency modulating signal is emphasized or boosted in amplitude in transmitter before modulation. To compensate for this boost, the high frequencies are attenuated or de-emphasized in the receiver after the demodulation has been performed. Due to pre-emphasis and de-emphasis, the S/N ratio at the output of receiver is maintained constant. The de-emphasis process ensures that the high frequencies are returned to their original relative level before amplification. Pre-emphasis circuit is a high pass filter or differentiator which allows high frequencies to pass, whereas de-emphasis circuit is a low pass filter or integrator which allows only low frequencies to pass. 					
Q.3		Attempt	any THREE of the follo	wing:		12 M	
	a)	Compare narrow band FM with wide-band FM w.r.t. following points. (i) Modulation index (ii) Maximum deviation (iii)Range of modulating frequency (iv)Application					
1	Ans :	Sr. No	Parameters	Narrow band FM	Wide band FM	1M for each	
	•	1	Modulation index	Less than or slightly greater than 1	Greater than 1	correct	
		2	Maximum deviation	5 KHz	75 KHz	point	
		3	Range of modulating frequency	30Hz to 3 KHz	30Hz to 15 KHz		
		4	Application	FM mobile communication like police wireless, ambulance etc.	Entertainment broadcasting can be used for high quality music transmission		
	b)	Sketch A	M signal in (1)Time dom	nain (2)Frequency domain.		4M	
	Ans :	AM in Time domain $ \begin{array}{c} $					

MAHARASHTI (Autonomous) (ISO/IEC - 2700

	AM in frequency domain	
c)	Explain why reception for high frequency band is better during night time.	4 M
Ans :	In sky wave propagation, the transmitted signal travels into the upper atmosphere where it is bent or reflected back to earth. This bending or reflection of signal takes place due to the presence of a layer called as ionosphere in the upper atmosphere. There are four main ionospheric layers F2, F1, D, E in the descending order. At night the F1 and F2 layers combine to form one layer and the lower two layers D and E disappears. As the lower layers are absent, the absorption of the signal does not take place, which was taking place during the day time. This improves the strength of the reflected signal and hence the reception for high frequency band is better during night time.	2M- explainatio n
	$\frac{4 \text{ op}}{100} + \frac{9 \text{ signs}}{100} + \frac{10 \text{ signs}}{100} + $	2M – Diagram
d)	Explain structure of rectangular microstrip patch antenna with its radiation pattern.	4M
Ans :	In telecommunication, a microstrip antenna (also known as a printed antenna) usually means an antenna fabricated using microstrip techniques on a printed circuit board (PCB).It is a kind of internal antenna. They are mostly used at microwave frequencies. An individual microstrip antenna consists of a patchofmetal foil of various shapes (a patch antenna) on the surface of a PCB (printed circuit board), with a metal foil ground plane on the other side of the board. Most microstrip antennas consist of multiple patches in a two-dimensional array. The antenna is usually connected to the transmitter or receiver through foil microstrip transmission lines. The radio frequency current is applied (or in receiving antennas the received signal is produced) between the antenna and ground plane. Microstrip antennas have become very popular in recent decades due to their thin planar profile which can be incorporated into the surfaces of consumer products, aircraft and missiles; their ease of fabrication using printed circuit techniques; the ease of integrating the antenna on the same board with the rest of the circuit, and the possibility of adding active devices such as microwave integrated circuits to the antenna itself to make active antennas. The most commonly employed microstrip antenna is a rectangular patch which looks like a truncated microstrip transmission line. It is approximately of one-half wavelength long. When air is used as the dielectric substrate, the length of the rectangular microstrip antenna is approximately one-half of a free-space wavelength. As the antenna is loaded with a	2M- explainatio n

		dielectric as its substrate, the length of the antenna decreases as the relative dielectric	
		constant of the substrate increases. The resonant length of the antenna is slightly shorter	
		because of the extended electric "fringing fields" which increase the electrical length of the	
		antenna slightly. An early model of the microstrip antenna is a section of microstrip	
		transmission line with equivalent loads on either end to represent the radiation loss.	
		Patch	
		The the	2M-
			Diagram
		L / // ///	2 mg
		+//X	
		▶ 1	
		Delectric Substrate	
~ 1		Ground Plane Substrate	
Q.4		Attempt any THREE of the following:	12 M
	a)	Explain Electromagnetic spectrum.	4M
	Ans	The information signal should be first converted into an electromagnetic signal before	2M
	:	transmission because the wireless transmission takes place using electromagnetic waves.	explanation
		The electromagnetic waves are oscillations which propagate through free space.	
		The electromagnetic wave consists of both electric and magnetic fields. The electromagnetic	
		waves can travel a long distance through space.	
		In electromagnetic waves, the direction of electric field, magnetic field & propagation are	
		mutually perpendicular. Since the oscillations are perpendicular to direction of propagations	
		of waves they are said to be transverse waves.	
		The frequency of electromagnetic signals ranges from few Hertz to several GHz. This entire	
		range of frequency of EM waves is called EM spectrum.	
		→ Wasutength	
			2М-
		ELF VP VLP LP MP HP VHF LIMF SIM EPH	diagram
		· · · · · · · · · · · · · · · · · · ·	
	1.	Frequency	
	b)	Draw the block diagram of AM. Super heterodyne ratio receiver and state the function	4M
		of each block	
	Ans	Receiving Anthe man Anthe O	diagram
	:		- 2M,
		Stage Stage Amplifier Amplifier Amplifier Amplifier Amplifier	- 2141,
		tion where age	
		Local oscillator	
		AM super heterodyne receiver works on the principle of super heterodyning.	
		In the super heterodyne receiver, the incoming signal voltage is combined with a Signal	
		generated in the receiver. The local oscillator voltage is normally converted into a signal of a	explanation
		low fixed frequency with the help of mixer.	$-2\mathbf{M}$
	1		<u> </u>

			equency contains the same modula				
	-	arrier and it is now amp	blified and detected to reproduce th	e original modulating			
	signal. Functions of each block-						
			er operates in the frequency range of	of 540 KHz to 1640			
	KHz.	,					
	RF stage - effect of		and rejects all other signals and the	is reduces the			
			stage Fs and the local oscillator Fo	o, and are mixed to			
	produce in IF=Fo-Fs	ntermediate frequency s	signal IF which is given as:				
	0	8	constant difference between the loc	cal oscillator and			
		frequency, gang capac					
			ied by the IF amplifier with enough				
			ected by the detector to get origina s control signals to control the gain				
	-	ed as AGC.	s control signals to control the gain				
	U		ontrols the gain of RF and IF ampli	fiers to maintain a			
	constant c	Ũ	ker even though the signal strength				
	varies.						
c)			Hz and the max. Modulating free	quency is 10 kHz.	4M		
		the deviation ratio a	nd bandwidth of FM.		2M-		
Ans	Given-: $\delta_{max=}$ 75 KHz						
:	f _{m=} 10KHz	$z_{\rm bn} Ratio = \delta_{\rm max/} f_{\rm m(max)}$			Deviatio		
	=75 KHz/2				ratio, 2M-		
	=7.5						
	Deviation Ratio=7.5						
	ii)Bandwidth= $2(\delta_{max}+f_{m(max)})$						
	= 2x(75+10)KHz						
	= 170 KHz Randwidth=170 KHz						
d)	Bandwidth=170 KHzCompare sky wave and space wave propagation w.r.t. following points.						
u)	(i) Frequency range						
	(i) Effect of fading						
		larization			4M		
	(iv)Application						
Ans	Sr. No	Parameters	Sky Wave Propagation	Space Wave	1M for		
:				Propagation	each		
					correct		
	1	Frequency range	3 MHz to 30 MHz	Above 30 MHz	point		
	2	Effect of fading	Problem of fading is severe	Fading is not severe			
				but shadow zones			
				due to tall objects			
				and ghost			
				interference are			

	e)	3 4 Explain	Polarization Application n the working of half of	Vertical RadioBroadcasting (SW Range) dipole antenna with its radiation patte	Line of Sight Propagation with waves horizontally Polarized Used for TV and FM broadcasting	4M
	Ans	s Half wave dipole antenna diagram				
	:	Explanation: 1. It is a resonant antenna 2. It is exact half wavelength $(\lambda/2)$ long & open circuited at one end. 3. The dipole antennas have lengths $\lambda/2$, λ , $3 \lambda/2$ etc. which are all multiple of $\lambda/2$. Hence they are resonant. 4. In half wave dipole antennas the forward waves & reflected waves exist. Hence radiation pattern is bidirectional. The radiation pattern of half wave dipole antenna is –			Diagram -1M Explanat ion-2M Radiatio n pattern- 1M	
Q.5		Attempt any TWO of the following:			12 M	
	(a)	Derive	a mathematical expre	ession for AM wave.		6M

BOARD OF TECHNICAL EDUCATION

Ans	Let the carrier Voltage and modulating voltage	6 M
:		
	Ve = Ve sinwet	
	The modulation index of AMwave grands	
	the modulation (imi = 0 to 1)	
	m= <u>Vm</u> is (m= o to 1) Vc	
	ve votage	
	Amplitude wave votage	
	Amplitude water vot a A = Vet 2m = Vet Vinsin comt	
	si smy sin com	
	= Vc (1+m sincomt) = Vc (1+m sincomt)	
	- i contrage of AM wave U.	
	The motor of a Asin we to an entert	
	= Vc (1+m sincome) The instanteneous vottage of AM wave is: V= Asin0 = Asinoet V= C[1+msincomt] sincet = Vc [1+msincomt] sincet	
	Accession 1	
	VAm = Ve sineset + mVe cos (we wan) t- mVe cos (we two) t	
	VAM - Ve Sineget + The cost and my 2	
	A 400 W corrier is amplitude modulated to a depth of 75% Calculate the total power in	
(b)	A 400 W carrier is amplitude modulated to a depth of 75%.Calculate the total power in AM wave.	6M
(0)	(i) Explain the types of noise in a communication system.	UIVI
	(ii) Compare simplex and duplex mode of communication.	
Ans		
:	Corrier Proven P= 400 ml - Corrier Produlation indee on = 75% = @75	
	$\mathcal{D} = \mathcal{C}$	
	$R_{e} = \frac{2}{P_{e}} \left[1 + \frac{m_{e}^{2}}{2} \right]_{2,7}$	
	$F_{e} = 4 \cos \left[1 + \frac{(0.75)^{2}}{2} \right]$ = 4 in $\times \frac{1.28}{2}$] $P_{e} = 512.3 \text{ M}$]	
	Log!	
	10 - 512.5 W	2M
		problem,2
	(i) Noise: Noise is any spurious or undesired disturbances that mask the received signal in a	M for
	communication system. a) Atmospheric Noise: Atmospheric Noise is also known as static noise which is the natural	noise,2M
	source of disturbance caused by lightning, discharge in thunderstorm and the natural	Compariso
	disturbances occurring in the nature.	n any 2
	b) Industrial Noise: Sources of Industrial noise are auto-mobiles, aircraft, ignition of	points 2M
	electric motors and switching gear.	
	c) Extraterrestrial Noise: Extraterrestrial Noise exist on the basis of their originating source. They are i) Solar Noise ii) Cosmic Noise	
	Internal Noise are the type of Noise which are generated internally or within the	
	Communication System or in the receiver. They are as follows:	
	1) Shot Noise : These Noise rises in the active devices due to the random behaviour of	
	Charge particles or carries. In case of electron tube, shot Noise is produces due to the	
	random emission of electron form cathodes.	

		tion Noise : When a circuit is to divide in			
	generated is known as Partition noise. The reason for the generation is random fluctuation				
	the division.				
	· ·	- Frequency Noise : They are also known a	• 1		
	-		v few kHz. Power spectral density of these		
	Noise	icreases with the decrease in frequency. If	hat why the name is given Low- Frequency		
		h Fraquanay Naisa : Thasa naisas ara ala	o known TRANSIT- TIME Noise. They are		
		ed in the semi-conductor devices when the			
		g a junction is compared with the time peri			
			l often referred as White Noise or Johnson		
		Thermal noises are generally observed in t			
		nents of a complex impedance due to the ra			
		as or electrons. Dark current noise: When t			
	-	etector a small reverse leakage current still			
		arrent contributes to the total system noise	and gives random fluctuations about the		
	0	e particle flow of the photocurrent.			
		rk current noise is given by: where e is the	e charge on an electron Id is the dark		
	Quantum noise: Discrete nature of electrons cause a signal disturbance called Quantum noise or Shot noise. It arises from the statistical nature of the production and collection of				
	or Shot noise. It arises from the statistical nature of the production and collection of photoelectrons.				
	-	parision of Simplex and Duplex			
	Sr.	Simplex	Duplex	1	
	No.	-			
	1.	It is one way communication	It is a two way communication		
	2.	Information is communicated in only	Information can transmit as well as		
		one direction.	receives simultaneously or not		
			simultaneously.		
	3.	Examples-	Examples-		
		TV broadcasting, radio broadcasting,	Walkytalky,telephone,mobile,Radar,		
		telemetry, remote control	FAX,Pager	_	
	4.		Terminal		
		Terminal B	A Or B Transmission in either direction,		
			but not simultaneously (b)		
		Transmission in only one direction (a)	Terminal Terminal		
		(4)	A B		
1	1.1		Transmission in both directions simultaneously (c)		
		· · · · · · · · · · · · · · · · · · ·		-	
		rite any one application of the following			
(c)	1	. Radio frequency		3M	
(c)		 Radio frequency IR frequency 		3M	
		 Radio frequency IR frequency Medium frequency 		3M	
(c) Ans	Appli	 Radio frequency IR frequency Medium frequency cation of 	range.		
	Appli 1.	 Radio frequency IR frequency Medium frequency cation of Radio Frequency- Radar signals and content 	mmunication	3M 1M each	
	Appli 1.	 Radio frequency IR frequency Medium frequency Cation of Radio Frequency- Radar signals and con IR Frequency- LED, Laser, TV remote, 	mmunication		
	Appli 1. 2.	 Radio frequency IR frequency Medium frequency cation of Radio Frequency- Radar signals and content 	mmunication		

BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous) (ISO/IEC - 2700 BOAR) :tified)

		(ii) Draw and label PLL based FM detector.	3M
	Ans	FM Detection Using PLL :	3M
	:	A PLL can be used as FM demodulator as shown in Fig.	diagram
		FM signal Phase Low pass FM emodulated FM signal VCO Control voltage (Error voltage)	
Q.6		Attempt any TWO of the following:	12 M
	(a)	(i) List any two advantages of folded dipole antenna. (ii) Draw the radiation patterns of the following resonant dipole antenna. 1. $l=2$ 2. $l=\lambda$ 3. $l=3\lambda/2$ 4. $i=3$ Where l is the length of dipole antenna.	6M
	Ans	(i) Advantages of folded dipole:	any 2
	:	 Higher input impedance Greater bandwidth Easy to construct cost of construction is less 	advantages 2M
		Current (a) $1=\frac{\lambda}{2}$ (b) $1=\lambda$ (c) $1=\frac{\lambda}{2}$ (c) $1=\lambda$ (c) $1=\lambda$	1 M for each= 4 M
	(b)	Explain Tropospheric scatter propagation with sketch.	6M
	Ans :	Lost scatter Longest path Shoriest path Back scatter Tropospheric scatter propagation.	3M sketch
		As the name implies, troposcatter uses the troposphere as the region that affects the radio signals being transmitted, returning them to Earth so that they can be received by the distant receiver. Troposcatter relies on the fact that there are areas of slightly different dielectric	3 M explanation

	constant in the atmosphere at an altitude of between 2 and 5 kilometers. Even dust in the atmosphere at these heights adds to the reflection of the signal. A transmitter launches a high power signal, most of which passes through the atmosphere into outer space. However a small amount is scattered when is passes through this area of the troposphere, and passes back to earth at a distant point. As might be expected, little of the signal is "scattered" back to Earth and as a result, path losses are very high. Additionally the angles through which signals can be reflected are normally small. The area within which the scattering takes place is called the scatter volume, and its size is dependent upon the gain of the antennas used at either end. In view of the fact that scattering takes place over a large volume, the received signal will have travelled over a vast number of individual paths, each with a slightly different path length. As they all take a slightly different time to reach the receiver, this has the effect of "blurring" the overall received signal and this makes high speed data transmissions difficult.	
	i) Draw the practical AM diode detector circuit. Sketch its input and output	6M
(c)	 (ii) Define the terms: 1. Skip distance 2. Maximum usable frequency 3. Virtual height 	
An :		diagram 1.5 marks wave forms 1.5marks
	1. Skip distance:-Skip distance is defined as the shortest distance from a transmitter,	1 Mark for
	measured along the surface of earth at which a sky wave of fixed frequency returns back to the earth.	each
	2. Maximum usable frequency: The limiting frequency when the angle of incidence is	definition
	other than the normal is known as maximum unstable frequency. MUF= fc sec θ .	
	3.Virtual height:- The incident and refracted rays follow paths that are exactly the same as they have been if reflection had taken place from a surface located at a greater height, called	
	Virtual height of this layer.	
I		